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Abstract

The area of computer graphics in the recent years has managed to produce

incredibly complex and photo-realistic effects, that are being used by a great

number of applications throughout different industries. All this was rapidly

achieved with the introduction of programmable 3D hardware and subse-

quently the manipulation of the graphics pipeline, with the use of shader

programs. However, the authoring of shaders is a challenging task that re-

quires highly specialized knowledge, even for seasoned programmers. This

thesis attempts to simplify this process, by proposing a system that makes

use of visual programming techniques that will assist the user in quickly pro-

totyping and modifying shaders. This tool exposes all of the modern shader

stages that are available in the graphics pipeline and presents a node creation

interface where the user can expand its functionality, by authoring custom

nodes. The decign decisions, implementation details, as well as the difficul-

ties that emerged during development, will be discussed in detail to provide

insight in the creation of such an application.

Keywords: Computer Graphics, Shader Programming, Visual Program-

ming, Graphs , OpenGL
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1
Introduction

1.1 Problem description

The area of computer graphics has seen a tremendous rise in the quality

of the effects that can be achieved, since the introduction of programmable

3D hardware. This breakthrough provided the processing power and the

software tools to manipulate it, in order to achieve results that in the past

would not be possible in digital applications. Subsequently, many other areas

have been further influenced by this escalation, with the most notable ones

being the gaming and the film industry. Modern software manages to create

photo-realistic effects and complex visual simulations both offline, in the case

of films, and in real time for the vast and complex worlds of modern video

games.

But even if graphics applications are so widely used, the theoretical back-

ground that is required for understanding the graphics pipeline, as well as

learning how to manipulate it, is considerable. Even experienced program-

mers need to spend a lot of time in order to specialize around this knowledge,

and even then, the process of authoring shaders can be challenging.

1



Chapter 1. Introduction

1.2 Goal of the project - Research question

In order to address the above problem, this project proposes a system that

can assist with the easier modification and authoring of shaders, by making

use of visual programming techniques. The goal is to provide an application

that will allow users to prototype and compare shader effects faster and in a

more abstract way, by focusing on the higher level manipulation of data in

the pipeline, instead of the low level details of code authoring. Furthermore,

the system will attempt to expose all of the available shader stages that are

part of the modern graphics pipeline in this environment, and address the

difficulties that might arise with their use.

The implementation is based around the notion of using a graph structure

and nodes to represent the different shader operations and data. These nodes

will be contained in a library that is initially populated by the developer but

can be further expanded by the user.

1.3 Result Summary

The resulting application offers a visual node editor where the user can easily

create and connect nodes, in order to produce, modify and save different

shader effects swiftly. Changes in these results can be previewed in real time

on a 3D model that was loaded with the use of a simple custom rendering

engine, that was created for the purposes of this project in OpenGL and

C++. Additionally, there is a node creation interface where the user can

author their own custom nodes.

The system is not a complete and polished application, and is still re-

stricted in many ways. From a lack of general usability features, to the

2



Chapter 1. Introduction

rather few available operations due to the size of the node library, as well as

a restriction in the authored shader language that is used by the nodes.

1.4 Chapter overview

Following this short introduction, the rest of the chapters will follow the

following structure:

• Chapter 2 presents an introduction to the theory that is essential to

the comprehension of computer graphics and shader programming, as

well an overview of the modern graphics pipeline.

• Chapter 3 contains an outline of related research in visual shader pro-

gramming and similar applications, that served as an inspiration for

this implementation.

• Chapter 4 presents the overall design of the system and its many com-

ponents, along with its usage capabilities.

• Chapter 5 provides an in-depth view of the underlying implementa-

tion details of the tool and the techniques that were used to create its

features.

• Chapter 6 examines the resulting system and discusses its strengths

and weaknesses in more depth.

• Chapters 7 and 8 include the features that will be implemented in

future development and the conclusion of the thesis.

3



2
Theoretical Background

Before presenting in detail the system that was created for this thesis, it is

important to provide an overview of the modern computer graphics pipeline

and shader programming to the reader that has never explored this area

before.

This chapter is dedicated to the introduction of basic concepts, theory

and keywords that are used throughout the chapters and are crucial to un-

derstanding the purpose and functionality of the tool. It is not meant to

provide an extremely detailed explanation, but more of an overview of the

graphics pipeline. The reader that is already familiar with these topics, may

skip directly to the next chapter which presents related work on visual shader

programming.

The following sections were authored using combined material from [4] [17]

and [10].

2.1 The Modern Graphics Pipeline

A graphics pipeline is a model that describes the series of steps that are

necessary for a graphics system to display something on the screen. That

4



Chapter 2. Theoretical Background

can be either a 3D entity, like a digital model of a character in a game, or

a 2D entity like a common window from the graphical user interface of an

operating system.

(a) Screenshot from the AAA game
title : God of War

(b) Visual studio application
windows

Figure 2.1: Examples of computer graphics entities

In either case, the final goal is to convert these defined entities into a final

digital image that can be displayed on a monitor. This process is called

rendering and the abstract steps that describe it can be viewed in figure 2.4.

Figure 2.2: Application to screen overview

The geometry of those objects (along with other possible characteristics)

is defined in a dedicated computer application which makes use of a graphics

API, that can communicate with the hardware, mostly the GPU, and handle

the rest of the rendering steps. A graphics programmer is responsible for

handling this API and manipulating the rendering process to their desires

and needs.

5



Chapter 2. Theoretical Background

Game engines and 3D modelling tools are examples of such applications,

that hide the complicated internal communication with the graphics API, by

providing an easy to use interface for creating and manipulating objects.

2.2 Geometry definition

Objects are comprised of collections of data called vertices, that contain the

geometric location of points in 3D space. If a user wanted to render a triangle

or a cube on the screen, they would need to define the 3D coordinates of the

points that define these shapes.

Z

Y

X

-Z

-X

-Y

(0,1,0)

(1,0,0)(0,0,0)

(a) Triangle in 2D space

Z

Y

X

-Z

-X

-Y

(0,0,0)

(-1,-1,-1)

(1,-1,1)

(1,-1,-1)

(-1,-1,1)

(-1,1,-1)

(-1,1,1) (1,1,1)

(1,1,-1)

(b) Cube in 3D

Figure 2.3: Geometry definition

In the example above, the triangle on the left was defined as a surface in

2D space by simply not making use of the z coordinate.

A collection of vertices may represent points but they can express dif-

ferent kinds of polygons or other simple geometric shapes which are called

6



Chapter 2. Theoretical Background

primitives. Some of the most common are points themselves but also lines,

triangles and quads. Ultimately, a rendered object is expressed in terms of

primitives. The user apart from providing vertex coordinates also chooses

the primitive (or topology ) type in which the API will draw these vertices.

The process of creating a primitive from a given set of vertices is called prim-

itive assembly. It is handled by the graphics system automatically and may

occur multiple times during the pipeline execution as we will see later.

After the geometry of a scene is defined, the graphics system will perform

an automatic rasterization step in which it will convert primitives that are

expressed in vector graphics, into discrete pixels that can be drawn on the

screen.

Figure 2.4: Application to screen overview

Apart from geometric information the user can define additional per-vertex

data. These data are called vertex attributes. The most common type of data

that is provided for each vertex is position,color information, a directional

7



Chapter 2. Theoretical Background

vector which describes the orientation of a surface called a normal vector

and is useful for many calculations and finally texture coordinates which

map the color contents of an image to a primitive. Vertex attributes will be

automatically interpolated for the interiors of primitives during rasterization.

2.3 Homogeneous coordinates

In order to avoid a possible confusion between a point and a vector, since

both can be described with the current representation, graphics systems use

a homogeneous coordinate representation instead, which is comprised of four

components for the three dimensions that we are working on. The first three

components x,y,z express the same information as before, while the fourth

component w creates the distinction between vector or point with its value.

Homogeneous coordinates are important in computer graphics systems for

various reasons. The most crucial transformations that are used for ma-

nipulating vectors and points, like translation, rotation and scaling, can be

easily calculated with the use of 4-dimensional matrices and can be applied

through simple vector-matrix multiplication. This of course means that the

vector representation needs to be four dimensional as well for the operations

to work.

(a) Translation (b) Rotation (c) Scaling

Figure 2.5: Common geometric transformations
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Chapter 2. Theoretical Background

The fourth component w is also important for the application of different

viewing and projection methods on a scene, through an operation called

perspective division. It is also crucial for the quick transformation between

coordinate spaces. Both of these concepts are described in more depth in the

next section.

2.4 Coordinate spaces

A coordinate system is the geometric space defined by a set of basis vectors

(axis) and an origin point.

Figure 2.6: Vector derived from 3 basis vectors

An important aspect of vertices and primitives, is the coordinate system in

which they are defined. A primitive will be rendered only if its coordinates

fall inside the cube volume that has its center at the origin and expands

from (-1,-1,-1) to (1,1,1), like the ones in example NAME. This is called the

9



Chapter 2. Theoretical Background

Normalised Device Coordinates (NDC) space. All vertices that lie outside

this volume will be discarded by the system. These coordinates are given to

the rasterizer that will finally transform them to 2D pixels.

It is apparent that if a great number of primitives were to be defined in this

coordinate system, either for simulating a complex surface or a complicated

3D scene that contains multiple entities, the task would become tedious and

difficult. It would also mean that every user of graphics systems and 3D

modelling application would have to adopt the exact same conventions when

it came to axis representation (left or right hand system), orientations, origin

etc.

For these reasons, the definition of coordinates is instead accomplished in

a series of steps. These steps will transform the vertices through several in-

termediate coordinate systems before they end up in the NDC space, making

the process more dynamic and ensuring that regardless of the conventions

used, the final result will be the expected one.

Changing coordinate systems for a vector means to change its frame of

reference in regards to the origin and the axis in which it was defined in. To

put it more simply, it is its equivalent representation in a new system that has

a different set of basis vectors. This is accomplished by simply multiplying

the vector with a 4x4 matrix that represents the transformation from the old

system to the new , just like the vector manipulation transformations in the

previous section.

10



Chapter 2. Theoretical Background

Figure 2.7: Rotation and scaling of a basis

There are six important coordinate systems commonly used in the graphics

pipeline. Each of these intermediate representations offers advantages and

easiness over certain operations/calculations. We will try to outline these

advantages as we provide a short description for each one below. An overview

of all the transformations can be seen in figure 2.8 below:

11



Chapter 2. Theoretical Background

Figure 2.8: Overview of the coordinate systems involved in the graphics
pipeline

• Object (or local) coordinate space

These are the local coordinates in which a single model is created in,

either from a computer application or by direct instancing in a file.

Usually they are specified around the origin with a desired orientation

and size. The range of the coordinates can be arbitrary and there is no

need to limit it in any specific range, like in the NDC.

• World (or Model) coordinate Space

The world space is the frame of an entire graphics scene, which may

contain a great number of individual objects. These coordinates indi-

cate where and how is an object placed in the world. Properties like

position, orientation and scale can also be altered in this space, in order

to fit the desired dimensions of the scene. For example, if we want to

place a cube with a 45 ◦ angle at the position (5,5,0), we can either cre-

ate a rotated cube at the origin in local coordinates and only perform

the translation in the world coordinates, or perform both the rotation

12



Chapter 2. Theoretical Background

and the translation of a non-rotated cube in world space. This separa-

tion of operations provides a lot of flexibility to the user and assists in

the easier creation of scenes.

The matrix that performs the transformation from object to world

coordinates is called the Model matrix.

• View (or Eye) coordinate space

Graphics applications perceive the world through the eyes of a virtual

camera. This camera views the scene from a specific position, angle and

orientation which corresponds to a new coordinate frame called View or

Eye space. The origin of this frame is the center of the camera’s position

and the axis are defined by its current rotation. This transformation

places an object in the way that it would be seen from the point of

view of the camera. The matrix responsible for this transformation is

called View matrix.

• Clip coordinate space

After bringing the vertices in eye space, a decision has to be made

regarding which objects will be included in the final rendering and

which ones will be clipped (omitted), hence the name of the coordinate

system. This decision is made based on the inclusion or not of the

transformed vertices inside the viewing volume of the NDC which was

discussed previously.

However, since this normalized viewing volume is not intuitive enough

to use, we define a new viewing volume of chosen dimensions and shape.

This volume is called a frustum and is represented by the Projection

matrix which projects 3D coordinates from the view space to 2D coor-

dinates in clip space.

In order to convert these 2D coordinates in the normalized range that

is expected by the system, an operation called perspective division is

13



Chapter 2. Theoretical Background

performed to all vertices and divides their x,y,z coordinates by the w

component of the vector, which effectively brings them to NDC. This

operation is performed automatically by the graphics API.

• Screen coordinate space

The final step in this pipeline, maps the normalized device coordinates

to actual 2D positions on the screen, which are measured in pixel units,

with the viewport transformation.

2.5 Shaders

The theory described in the previous section is fundamental regardless of

the graphics system and the API used. This section will also provide crucial

information in regards to programming the graphics pipeline but some parts

might be more exclusive to OpenGL.

Computer graphics as a field is known for being able to create extremely

photorealistic images and effects that have been and are included in many

different mediums and applications. From complicated geometric animations

and graphical user interfaces to almost realistic simulations of natural lighting

for great AAA games in real-time. In order to achieve these effects, simply

defining 3D geometry was not enough. Programmability of the graphics

pipeline and communication with the hardware was essential. This led to

the creation of programmable shaders.

Shaders are programs that rest on the GPU and have a really specific

functionality. They are responsible for producing outputs from the inputs

they receive, usually in the form of geometric information, but not exclusively.

They are not allowed to communicate with other shaders in any other way

than this input/output interface. They are injected in different parts of the

14



Chapter 2. Theoretical Background

pipeline that was described in the previous section, in order to alter settings

or perform new types of calculations during the conversion of the vertex data

to final pixels.

There are different types of shaders that are used for the different possible

locations in the graphics pipeline. Some of those are mandatory and need to

always be present for the pipeline to work while some are optional. A brief

introduction to the types and their functionality will be provided below.

Figure 2.9: The expanded graphics pipeline
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Chapter 2. Theoretical Background

2.5.1 Vertex shader

The vertex shader is the first and one of the most important shader types

in the program. It is one of the mandatory stages of the pipeline and its

purpose is to perform transformations to the per-vertex attributes that it

receives as input. This means that it operates on and outputs one vertex

at a time and is invoked once for every vertex that was provided from the

vertex data specification. Most of the 3D coordinate space transformations

that were introduced previously take place during this stage, with the final

vertex being converted from object to clip space, as depicted in figure before.

2.5.2 Fragment shader

The fragment (or pixel) shader is the last programmable stage of the pipeline

before writing to the final buffer that will form the rendered 2D image. Along

with the vertex shader, it is part of the minimum mandatory shaders that

need to be provided by the programmer.

It operates on the fragments that are generated by the rasterization step

of the transformed primitives and its goal is to calculate the final color of

each fragment. Similar to the vertex shader, it operates on a single fragment

per invocation and is invoked as many times as the number of fragments.

During processing, each fragment has data available from the previous

vertex processing stage, which is usually the vertex shader, but not always as

it will be described in the later subsections. These data are the interpolated

per-vertex attributes that were described above.

16
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2.5.3 Geometry shader

Geometry shaders are optional and are placed between the primitive assembly

step that happens after the vertex shader or (the tesselation shader if it

is used) and the rasterization step. Geometry shaders operate on a whole

primitive and have full access to the vertex information that comprise it.

They can output zero or a number of new vertices, and can modify the

topology type of the received primitive. For example, even if the vertex

shader generated triangles, the geometry shader can convert them back to

points or lines.

It must be noted that a geometry shader cannot accept all of the available

types of topology that can be generated either by the application or from

previous shader stages. Therefore, they must be internally converted before

they are given to the shader for processing. There are also restrictions re-

garding the type of topology that can be outputted by the geometry shader

(points, line strips, triangle strips), as well as the number of new vertices

that can generated.

2.5.4 Tesselation shaders

Tesselation is a process that subdivides existing geometry to smaller prim-

itives, with the purpose of creating a more detailed and smoother surface.

This step is optional and lies between the vertex shader and the geometry

shader (or the fragment shader if the geometry shader is omitted). Tessela-

tion shaders can create new geometry, much like the geometry shader, but

they are not capable of modifying the received topology type and can only

provide more of the same type.

Tesselation shaders require a new type of general purpose primitive called a
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patch for inputs, which is basically a collection/grouping of a specific number

of vertices. This number can be specified by the developer and it has an

implementation based maximum limit that is at least 32. This allows the

shader to work with a lot more vertices at the same time than the geometry

shader. The output limitations are also a lot more flexible and the number of

vertices that can be produced is much higher. This is why tesselation shaders

are preferred over geometry shaders when it comes to level of detail (LOD)

manipulation of the geometry.

Tesselation is divived in three stages, two of which are programmable

shaders. They will be shortly described in the following subsections:

2.5.4.1 Tesselation control shader

The tesselation control shader (TCS) is responsible for setting the tesselation

levels of a patch and preparing the final control points that will be used for

the process during the execution of the tesselation evaluation shader (TES).

Even if tesselation is used, the TCS can be omitted if the developer defines

the tesselation levels manually from the main application.

The TCS outputs patches to the TES but the calculation process for each

patch happens sequentially. Instead of outputting all the data in one invoca-

tion, like the geometry shader does, the TCS will be invoked once for every

vertex in the output patch, calculating them one at at time. The size of

the output is not necessarily the same as the input. Additionally, the whole

input patch data is available for use on each invocation.

There are four outer tesselation levels and two inner that can be defined.

Some or all of them will be used, depending on the type of tesselation pattern

that the TES is using and will be described in the next subsection.
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Between the TCS and the TES exists a fixed-function stage called tes-

selation patch generator (TPG) which creates the correct number of new

tesselated geometry and provides parametric coordinates for them to the

TES.

2.5.4.2 Tesselation Evaluation Shader

The TES uses the coordinates of the control points from the TCS output

patches as well as the parametric coordinates that are provided by the TPG,

to calculate the final 3D coordinates of the new geometry and possibly alter

it. The TES also specifies some parameters for the tesselation, like the tesse-

lation pattern (quads, triangles, isolines), the spacing between the tesselated

segments and others.

2.5.5 Compute shaders

Even though compute shaders are not used in this project, we mention them

for the sake of completion. They are the most recent shader stage to have

been introduced in the pipeline and are mostly used for performing arbitrary

calculations in the GPU which might not be directly related to the rendering

process but may use or output information to the rendering pipeline.

2.6 Shader program object

Shaders are grouped together to form a shader program object, which when

activated in the application, will use the pipeline created by the linked

shaders to render objects. This program needs to have at least a vertex
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and a fragment shader as stated above, and may use any of the optional

stages. When linking shaders together the API is linking the outputs of a

shader stage to the inputs of the next. Mismatch between those leads to

linking errors.

2.6.1 Type Qualifiers

Apart from vertex attributes, there are two other important types of variables

that circulate information.

Varying variables have been mentioned before, and are the data that are

passed between shader stages through the input/output interface. They have

to explicitly declare the direction of their information flow. Attributes for

example, are essentially varying variables that are given as input to the vertex

shader but from the application instead of another shader stage.

Uniform variables are special data that can be sent directly from the ap-

plication to the shaders in the GPU, and are global and unique to the scope

of an entire shader program. Every shader stage at any point has access to

them and their values will not be changed unless they are updated by the

application.

The concept of these variables are the same in all graphics APIs but the

naming might differ.

2.7 Shading languages

Depending on the graphics API a developer is using, there is a corresponding

programming language for shader development.
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The most common shading languages and their corresponding APIs that

are used in real time rendering can be viewed in the table below :

Graphics API Shading Language Developer
OpenGL GLSL The Khronos Group
DirectX HLSL Microsoft
NVIDIA cg(discontinued) NVIDIA

Playstation 4 PSSL Sony
Metal MSL Apple

Stage3D AGAL Adobe
Vulkan SPIR-V The Khronos Group

Table 2.1: Shading Languages
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Related Work

Creating a node based interface is not an original idea in computer graphics

applications. The complexity and the steep learning curve of shader pro-

gramming, created an early need for tools that make the use or learning

process of shaders more approachable by all types of users. This is why there

are many embedded or standalone nodal tools in the industry, as well as

scientific research regarding visual shader programming.

The following sections will present some of the most notable research that

has taken place throughout the years, as well as some of the most common

commercial tools that served as an inspiration for this project.

3.1 Visual Shader Programming evolution in

research

Robert L.Cook [8] was one of the first people to try and move away from fixed

models in shading (which was the standard at the time) by proposing the idea

of shade trees, shade languages and modular shading components. Shade

trees were a flexible and dynamic tree structured model, that calculated

the final output color for different types of surfaces. Basic operations like
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dot products, normalization, reflection etc, were translated into nodes that

receive and output appearance parameters to each other and serve as the

building blocks for computational trees that can describe different surfaces

or lighting effects. These parameters can be any type of geometric, material

or environmental properties. One drawback of these methods was that the

node connections and the creation of the trees had to be authored by hand

with the use of a specific new shade language and therefore did not have the

benefits of a visual interface.

Figure 3.1: Shade Trees

Abram and Whitted [7] created the first visual implementation of Cook’s

shade trees that did not require code authoring. This implementation pro-

vided the user with a visual editor that could modify connections and param-

eters in a node network, in order to create complex shaders without exposing

their inner implementation. It also provided quick feedback of the user’s

changes through a preview window that rendered the new shade effects on a

sphere model when instructed.

Following that, Goetz et al [12] presented a graph system based on the

above work but built for the modern technology of the time. Its goal was

to provide the means for visually developing complex effects for the newly

introduced vertex and fragment shaders of the OpenGL API. The resulting
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topology of the graph that represents the final shaders, were stored in XML

format with the intention of possible integration with XML based 3D formats

like Extensible 3D (X3D). These results could also be later translated to the

Cg shading language. The system offered a low abstraction level since the

nodes represented functions that were more or less equivalent to operations

from Cg.

Figure 3.2: An XML-based Visual Shading Language for Vertex and Frag-
ment Shaders (Goetz, 2004)

In order to address the problem of coupling between the visual elements

and the low level programming functionality, McGuire et al [14] proposed

the usage of abstract shade trees. Their aim was to create a system that

does not require any programming knowledge, something that its predeces-

sors did, but can be used by artists directly. It works with high-level rich

types as nodes called atoms, that encapsulate information like semantics,

transformation space, dimensionality, length etc. The user connects existing
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effects together, which are sub-graphs comprised of said atoms, with a single

edge that creates a data-dependency flow between them. The system will

then automatically create appropriate internal connections between output

and input components from those connected effects on the lower level, based

on the type definitions of the I/O components and their semantic similarity.

One drawback of this abstraction level is that the lack of details can make

some effects more difficult to comprehend, since the user has no knowledge

of the actual internal data connections.

Figure 3.3: Abstract Shade Trees

Shortly afterwards, Jensen et al [13] created another system for interac-

tive shader development through visual methods. This was closer to the

implementation from Goetz et al [12] in the sense that the node slots that

are exposed are closer to the lower level shader data (attributes, variables

etc). Furthermore, the implementation tried to improve on previous difficul-

ties/issues by using intelligent variables in the connection slots, that maintain

information about the data type of the variable and the space in which it was

defined. The editor will allow connections between variables of the same type

and will automatically make the appropriate transformations if their math-

ematical space differs. The paper also proposed some shader optimization

techniques for code placement and use of minimal transformation costs.
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Figure 3.4: Interactive shader development

In his master dissertation thesis, Fitger [11] designed and implemented

a similar system for the visual authoring of vertex and fragment shaders

in OpenGL, that tried to improve the usability of the previous systems by

non programmers. The system investigated the integration of the resulting

shaders with third party applications in a more generalised way, since previ-

ous systems were highly coupled only with specific systems. It also provided

a modular node implementation interface in which users can easily extend

the current node library of the tool using XML. Moreover, it handled the

issue of data type checking between connections, through an automatic type

conversion library that checks if a conversion between the specific data types

is possible or not and additionally locate the computationally cheapest.
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Figure 3.5: Visual shader programming

A more recent approach by Vergne et al [16] was Gratin. It is a pro-

grammable node-based system tailored to the creation, manipulation and

animation of 2D/3D data in real-time time on GPUs. It targets different

types of users, by allowing experts to customize shaders by hand in a lower

and detailed level (generic nodes), while non-experts make use of the higher

level visual environment that does not require deep technical knowledge of

shaders to use. The node library is restricted, in the sense that each node

encapsulates one or many shaders that perform complicated effects or higher
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level data (e.g images), without providing different node types for low level

parameters like float or custom vector values. Due to its modern develop-

ment time, Gratin makes use of all modern shader stages as well both in the

custom syntax editor and through the predefined effects in nodes.

Figure 3.6: Developing Grating

3.2 Commercial visual shader development tools

Apart from the research and the systems introduced in the previous section,

there are many commercial tools that make use of real time visual shader de-
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velopment. These are usually embedded systems in much larger applications,

like 3D modelling software or game engines, with the purpose of assisting non

programmers and artists to create shader effects faster and easier.

Most of them are naturally not open source and access to their low level

implementation details and architecture is not available. But useful knowl-

edge can still be obtained from the development environment that is offered

to the users.

3D modelling software like Blender [1], Autodesk Maya and 3ds max [2], or

texturing software like Substance, offer similar functionality with their nodal

tools who are mostly targeted towards artists and have a more high level

approach. They offer a wide range of premade shader effects that the user

can parameterize and mix together, without the need for creating complex

low level pipelines, all while being easy to learn and use. In contrast to the

Autodesk products, Blender is open source and free to use and edit.

(a) Blender (b) Maya

Figure 3.7: 3D modelling tools

These tools also offer good intergration of the produced shaders and effects,

with most game engines.

Popular game engines, like the Unreal Engine from Epic games [6], Unity3D
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[5] or the open source Godot3D also have embedded nodal tools for shader

creation.

Unreal was one of the first commercial products to adopt visual graph

techniques since its initial development, not only for shader/material edit-

ting purposes but for most of its other components through the use of the

blueprint subsystem. Its visual material editor offers a wider range of op-

tions to the user, both high (predefined shader effects) and low level (math

operations and numerical parameters), through its extensive node library.

Some of the node effects and general settings that are offered, make use of

modern shader stages like geometry and tesselation but on a higher level of

abstraction. Unreal Engine made the source code available to the public a

few years ago, even though it still remains a licensed product.

Figure 3.8: Unreal engine’s blueprints

Unity3D only recently exposed more configuration over its rendering pipeline

to the public and also introduced a node based visual shader editor, Shader-

Graph. It is still in its early steps of development and does not offer as an

extensive node library or options as the Unreal Engine, but it is still an easy

to use practical tool that can provide insight for modern visual shader devel-
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opment. Unity is free to use even for commercial use, up to a specific point,

but the full source code is not available to the public. However, in the case

of ShaderGraph and the new Scriptable Rendering Pipeline, the repository

is available to the public.

Figure 3.9: Unity’s shadergraph

Godot’s visual editor was initially introduced as a feature in one of its

previous versions but was later removed and is not available in the current

release. It is expected to return in future patches.

3.3 Non visual shader development software

Apart from visual based methods, there is a plethora of tools for syntac-

tical shader authoring. These are mostly targetted towards programmers,

both amateur and expert, that have a level of understanding of the graphics

pipeline and can effectively modify shader code to quickly prototype their

31



Chapter 3. Related Work

ideas. Most of these tools are web browser based and use the WebGL API,

which is a cross platform simplified version of OpenGL but tailored for use

in browsers.

Tools like ShaderToy [3] and GLSL Sandbox offer shader editing only for

fragment shaders, while previewing the results in a different viewport. The

user can choose to make their shaders public and add them in a huge library,

where other users can view, rate or comment on them.

Other more sophisticated tools like KickJs [15] and Shdr, offer the addi-

tional option of editing vertex shaders, as well as other general API settings

like blending mode, culling face etc.

Web 3D applications unfortunately do not have yet access to the modern

shader stages of native APIs.

(a) ShaderToy (b) KickJs

Figure 3.10: Non visual shader editors
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Design

4.1 Overview

Heavily inspired by the related work presented in the previous chapter, the

design/implementation of the tool was made with a similar structure and

functionality in mind. There are of course many differences, extensions or

drawbacks/limitations which will be noted when necessary.

The general aim of the system is to offer flexible shader modification

through the creation of a visual graph. Each node in this graph represents

either data for use or operations to be performed in shaders, in the form

of source code snippets (text strings). Connections between these nodes,

manipulate the dataflow by feeding the results of one operation as inputs

to others, resulting in chains of calculations that lead to more complicated

effects. These effects can be reviewed and changed in real time with low

effort.

Apart from the set of operations offered by the current version, the system

also offers the possibility of extending its functionality through an implemen-

tation interface for creating custom nodes.
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4.2 The Graph system

The structure that enables the desired modular shader modification men-

tioned above, is a number of nodes connected to each other to create a large

graph that corresponds to chains of complex calculations.

Since this flow of data is directional and cycles in the graph are not desir-

able, because of logical and syntactical inconsistencies that might occur, it

is categorized as a Directed Acyclic Graph (or DAG for short). This is not a

surprise since DAGs are commonly used in most approaches towards visual

shader programming. [11] [7] [16].

An example of a simple effect created with the visual graph interface can

be seen in figure 4.1.

Figure 4.1: An example of a graph calculation

The example above indicates that information flows from the left to the

right and therefore the nodes must be evaluated with an equivalent priority.

This is expected since nodes that will pass an output value to other nodes

need to be evaluated first. It should be noted that an output slot can be

connected to multiple different inputs but since it is ambiguous to receive
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an input value parameter from multiple sources, input slots have only one

incoming connection.

In order to achieve the above notion of priority evaluation, the system

performs a depth first traversal algorithm logic in the opposite direction,

starting from the root node of the graph that lies at the farthest right and

propagating all the way to the nodes to the left. This root node will always

be the final entity to be evaluated and is responsible for accumulating all the

source code that flowed from the graph operations and appending them in

the appropriate segments of each shader code. This algorithm is examined

in more detail at a later section.

4.3 Data types

Each node slot has a specific data type related to it. This either describes

the data type that this slot will output or what kind of data it expects to be

passed to it. The choice of which data types to include in the tool, was made

based on the most useful and common types that are part of GLSL. These

are the following :
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Data Type Description
bool Conditional type
float Floating point scalar
int Integer value
vec2 Vector of 2 floating points
vec3 Vector of 3 floating points
vec4 Vector of 4 floating points
mat4 4x4 matrix of floating points
sampler2D 2D texture sampler
samplerCube Cube map sampler

Table 4.1: Data types

Extending this list to support more types is possible but only from the

backend of the system.

A connection between an output slot and an input slot is valid and is cre-

ated only if they both have the same data type assigned to them. Otherwise

the connection is simply rejected. An automatic type conversion system that

can assist with transforming data types that are similar, like for example a

float to an integer or vice versa, is not available in the current version.

Input slots that do not receive their value from another node, are automat-

ically initialized to the default value of their data type, except for Sampler2D

and samplecubes, which require an input node to be present.

4.4 Node architecture

All nodes inherit from a generic node interface, that contains information

that is common to all of them, like the name of the node, its unique ID in

the graph, the shadertypes that this node is allowed to be executed in and

other.
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The generic structure for a node can be seen in figure 4.2:

    Name      -        ID

... ...
Inputs OutputsInput slot 0

Input slot 1

Input slot N

Output slot 0

Output slot 1

Output slot N

Figure 4.2: Generic graph node structure

The details of this structure are altered depending on the type of the node.

There are four available basic types:

1. Input Nodes

2. Function Nodes

3. Output Nodes

4. Shader Nodes

4.4.1 Input nodes

Input nodes represent any kind of data that is used as input to a shader.

They only have output slots since they act as sources of data. Their main

purpose is to initialize and modify arbitrary variables that can be used as

inputs to other nodes.

There are different input nodes for every data type from table 4.3 like

float scalars or vectors, whose values and shader type qualifiers (e.g constant,

uniform) can be directly modified by the user from the GUI. There are also
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special input nodes that represent built-in attributes for each shader type,

like the position or the corresponding normal for a vertex from a vertex shader

or the invocation index from a tesselation shader. Finally, there are input

nodes that expose useful global scene information from the application, like

transformation matrices (Model, View, MVP etc) or the current time value

of the system.

Input nodes that express local constant values have their current execution

shader value change to the type of shader that they are connected to. This

is not necessary for uniform variables, since they are globally scoped to the

program and can be used by every stage, or for attribute nodes who are

automatically assigned to the corresponding shader type that they expose.

Figure 4.3: Examples of input nodes

4.4.2 Function nodes

Functions nodes are responsible for any kind of shader effect or formula im-

plementation that the user wants to perform. They include everything from

mathematical and logical operations for a specific data type, to geometric dis-

placement, texture manipulation, lighting calculation algorithms etc. These

operations will be performed either on the incoming data from the inputs

slots or on the default values of the data types, and will produce one or mul-

tiple results on their output slots. The number of input and output slots can
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vary depending on the operation.

Figure 4.4: Examples of function nodes

Some operations may only be performed in certain shaders, since they

require access to data that is exclusive to those stages, while others may be

performed at any stage without issues. An example is the screen space normal

effect which can only be used by the fragment shader, while mathematical

operations like a vector3 addition can be performed at any stage.

For this reason, the user may change the current execution shader of the

node in order to produce the desired result. Some possible issues with the

shader stage order of connected nodes may arise. This will be discussed in

more detail in a later chapter.

4.4.3 Output Nodes

Output nodes have the opposite functionality of input nodes. They are nodes

that only receive information, therefore they only have input slots. They

serve as converging ending points for calculations, where the exposed vari-
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ables of the input slots will be matched to the incoming data.

4.4.4 Shader Nodes

Shader nodes are specialized output nodes that represent the different shader

stages. They expose built-in variables and unique settings for the correspond-

ing stage that the user may want to modify, like tesselation levels or the color

output of the fragment shader. There can only be one of each of those nodes

per graph.

Figure 4.5: Examples of shader nodes

4.4.5 Node implementation interface

One desirable feature that was part of the design of the tool since the early

stages, was the opportunity to customize and extend the functionality of

nodes through the use of a simple node implementation interface, an idea
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inspired by Goetz et al [12] and implemented in a similar fashion by Fitger

[11]. Instead of using the XML mark-up language that was used in these sys-

tems, the interface uses the Javascript Object Notation (JSON) to represent

the node structure parameters.

There is one JSON file in the project directory for every basic type of node,

that contains a list of JSON objects with specifications for every different

node of the said type. These lists have been initialized with nodes that were

used during development and cover common operations.

The tool parses each of them once when the application starts and creates

a library in the form of maps. When creating a node, the system will retrieve

the appropriate data from this library at run-time.

In order to create a new custom node, the user is required to add a new

object entry to the appropriate file and list, while following the format of that

specific type. This must be performed before the application is launched,

since the parsing of the JSON files happens only once as mentioned earlier.

An example of the structure of a JSON object can be seen below:
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{
”NodeType ” : ” Function Node” ,

”Name” : ” AdditionVec3 ” ,

” Category ” : ” Mathematical ” ,

” Ava i lab leShaders ” : [

” Vertex ” ,

” Tess Contro l ” ,

” Tess Eval ” ,

”Fragment ” ,

”Geometry”

] ,

” S l o t s ” : [

{
” SlotType ” : ” Input ” ,

”SlotName ” : ”$a ” ,

” VariableType ” : ” vec3 ”

} ,

{
” SlotType ” : ” Input ” ,

”SlotName ” : ”$b ” ,

” VariableType ” : ” vec3 ”

} ,

{
” SlotType ” : ”Output ” ,

”SlotName ” : ”Vec3Add” ,

” VariableType ” : ” vec3 ”

}
] ,

”Code ” : [

” vec3 Vec3Add = $a + $b ; ”

]

}

Listing 4.1: Function node implementation interface
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In the example above, we define the function node ”AdditionVe3” which

outputs the addition of the two vec3 inputs. This specific node will be

listed in the subcategory ”Mathematical” which contains math operations

(see The function node subcategory list for all available categories) and can

be performed at any shader stage in the pipeline.

Depending on the basic type of node, the fields of the corresponding JSON

object are slightly different. For example, the field ”Code” is not a part of

the input node interface, since input nodes do not specify custom shader

operations.

It is important to note that all of the key/value pairs must be filled out.

It is also important that the user pays close attention to syntax, lower-upper

case letters and correct name matching between variable references in the

code to avoid potential errors and ensure that the operation behaves exactly

as expected.

4.5 Saving results

The user can choose to save the effects that they have created with the tool at

any point. The save/export button will simply save the current state of the

shader program, by creating a folder in the project directory that contains

five GLSL text files, one for each shader stage. No code optimizations or

further modifications are performed to the saved result.
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4.6 Visual user Interface

The GUI is pretty straightforward and simple to use but offers only a limited

amount of actions to the user. The focus of the development was mostly

towards creating the underlying system and less towards improving usability.

The interface consists of an application window that contains the sceneview

viewport and a panel for the visual shader editor graph.

Visual shader editor panel Sceneview

Figure 4.6: GUI overview

The sceneview is used to display a 3D model of choice using the active

shader program.

In the visual editor panel the user can manipulate the graph by creating

and connecting different types of nodes. Changes to the graph modify the

shaders of the program that is currently used for rendering and the results

can be viewed in the sceneview in real time.

Right clicking anywhere in the panel background, will display the creation
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menu which the user can navigate to choose the specific node they wish to

add to the system. This list is populated according to the maps that contain

the names and initialization parameters of the nodes. The choice is made

by simply left clicking on the appropriate menu item. Left clicking on the

background will close the menu with no changes.

The newly created node will appear at the current location of the cur-

sor. Nodes can be moved and reorganized inside the panel by clicking and

dragging them from their title boxes

Figure 4.7: Node creation menu
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In order to create a connection, the user has to simply click either on an

input or output slot of a node, drag the cursor to the corresponding slot of the

target node they wish to create the connection with and release the button.

If the mouse is released anywhere on the panel other than the position of a

slot, then no change will be made to the graph. As mentioned earlier, output

slots can be used for multiple connections while input slots only have one

incoming connections. This means that when trying to create a connection

with an input slot that is already connected to a node, the system will replace

the old connection with the new.

Figure 4.8: Replacing a connection

To delete an existing connection the user needs to click and drag starting

from the input slot side of it and simply releasing the mouse anywhere on

the background of the panel, replacing essentially the old connection with an

empty one.
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Figure 4.9: Deleting a connection
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Implementation

This chapter will examine in more depth the actual implementation details of

the system. We will start with an overview of the key technologies used for the

development. Then we will present the system architecture and elaborate on

the details of the shader structure and the compilation process of the graph.

Lastly we will take a look at how the visual interface was created.

5.1 Overview

The overall system was built using C++ and Microsoft Visual studio. For

the custom made engine responsible for the rendering we used the Open

Graphics Library API (OpenGL) and subsequently the OpenGL shading

language (GLSL). The system does not have an abstraction layer between

the source code functionality and the shading language, meaning that all the

source code contained in the nodes is GLSL code. Since tesselation shaders

are used, the required version of OpenGL is 4.3 for the user to run the

application properly.
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5.2 Node hierarchy and classes

All of the basic types of nodes implement the generic Node interface, as

mentioned in the previous chapter. It is an abstract class that contains

all the common attributes that a node of any type needs to have, like their

name, unique ID, their node type, the allowed shaders that it can execute etc.

Every derived node inherits and alters this information and has to override

the virtual compile method that is responsible for the operational logic of the

node when it is evaluated during the graph’s compile phase. An overview of

the class hierarchy for the existing nodes can be seen in the figure below:

Figure 5.1: Node architecture

This structure attempted to avoid creating an individual class for each

and every different node that exists in the system. This would create a lot

of unnecessary overhead since most of the basic structure is common for

nodes that belong to the same base type (Input, Function, Shadernode). For

this reason, the individual functionality is embedded inside these classes and
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handled accordingly.

For example, for the category of Input nodes, instead of having different

classes deriving from the InputNode class for two different data types (e.g

float and vec2) or for the different shader attributes, the system handles

all these different cases by using instances of the same class but with the

different parameters that determine the behavior of the node. This keeps all

the information local and allows for better maintenance since changes will be

applied either automatically to all input nodes, or will only affect a section

for a specific case. The final parameters for each instance are still determined

from the corresponding JSON file and are retrieved from the appropriate map

at runtime.

Figure 5.2: Node information retrieval

This method works well when the functionality of the node, as unique as it

is for each node, still falls under the same format and overall structure of the

corresponding base type. However, in the case of new and explicit operations
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that differ from the base type pattern, creating a new derived class cannot be

avoided. An example is the LoadTexture node which apart from outputting

a texture sampler, similar to a float or a vec4 type, also encapsulates the

operation of loading and storing a texture which requires special functions

and possible communication with the renderer. Other special cases are the

’Time’ node and the ’ArrayIndex’ node.

5.3 Compilation process

The following section will describe in depth the compilation process of the

graph and the details around the modification process of the shaders.

5.3.1 Graph traversal

As explained in an earlier section, the graph is a DAG since the dataflow

is directional from output to input slots. The graph traversal though uses

the opposite direction (input to output) to perform a depth first traversal.

The node class retains connection information for both inputs and outputs,

making this navigation possible. It is intuitive to use this direction since an

input node has only one connection, effectively creating a tree structure.

Using the output shadernodes and the master root node as starting points,

the traversal logic for a single node is the following :
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void TraverseNode (Node CurrentNode )

{
i f ( CurrentNode . HasCompiled == f a l s e )

{
f o r ( a l l input s l o t s in CurrentNode )

{
i f ( s l o t−>ConnectedNode == nu l l )

{
cont inue ;

}
e l s e

{
TraverseNode ( s l o t−>ConnectedNode )

}
}
CompileNode ( CurrentNode ) ;

}

}

Listing 5.1: Node traversal logic

The above algorithm ensures that the current executed node will only be

compiled once, even if there are multiple paths to it, and that all of the nodes

that will provide their results as its inputs will be compiled first. Calling this

algorithm from all output nodes will ensure that all nodes that are connected

to the graph will be evaluated. Those without any connections will not be

part of the process. Traversals are initiated from all shadernodes in order,

with the fragment/Master node being the last.
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Figure 5.3: Example of the node compilation order

5.3.2 Node Compilation and variable naming

In order to ensure that every variable name in the final program is unique, the

system makes use of two maps/dictionaries, one that maps output slot names

with their associated variable names and one that maps variable names to

their associated slots.

This allows for the quick retrieval of the name that is associated with a

slot or the slot associated with a specific name, if those have already been

assigned in the program. An output slot’s identifier name in the map is

unique and its value is assigned by the formula below:

OutputSlotName = NodeID + ”− > ” + SlotIndex (5.1)

where the NodeID is the unique ID of the node and SlotIndex is the index
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of the slot in the array of output slots.

During compilation, a node firstly iterates over its input slots and replaces

the predefined variable name related to it (e.g $normal , $color ,$vector ) in

its source code snippet. This name will be replaced either by the variable

name that is received from another node, or the default value of its data

type. In the case that an incoming connection exists, the variable name is

retrieved from the slot to variable map, by checking the connected output

slot’s name entry.

After this process is done, the node updates the maps, by creating new

entries for its own output slots’ names and their associated variable name

values. To avoid conflicts in new name declarations, the system will check if

the names already exist. If they do, a new unique name will be generated by

appending a unique integer identifier at the end of the predefined names (e.g

0, 12 ). This new name will also be correctly replaced in the source code,

just like for the input nodes. We remind the reader that the initial predefined

name for a slot is assigned from the node implementation interface and the

JSON file.

The above process ensures that all the final variable names created for

the shader program are unique. One drawback is that it does not check the

names of local variables that are exclusively used for calculations inside a

specific source code snippet of a function node. These local variables are not

registered in the dictionaries since they are not part of the input/output slot

operations and were written by the author of the code. Examples of such

variables can be seen in figure 5.4 below:
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Figure 5.4: Examples of local variables in the Blinn Phong node

In order to address this issue, a standard for the source code authoring

of the nodes needs to be adopted, that will differentiate between a variable

generated by a node and a local one, effectively avoiding the issue.

It is important to note that the modifications in the variable names and

the source code is not permanent. The node creation library retains all the

initial information and the node evaluation always begins from those default

values. The slot to variable maps are also cleared and reset before every

graph compilation.

After both input and output slots have been iterated and have modified the

source code of the node appropriately, the final step of the node compilation

is to append that source code in the appropriate shader and section. This

process will be explained in detail in the next chapter.

5.4 Shader segmentation and modification

The idea of modulary constructing a shader by using an abstract syntax

tree representation, that eventually compiles into actual shader code was
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abandonded early in the process. The design and workload of creating such

a system from scratch would be too great for the scope of this thesis, as was

realised during the examination of relevant material [?].

Instead, shaders are modified through simple text editing. The initial

shader program used for rendering, contains a default passthrough shader

for each stage. This serves as the basic skeleton code which will be further

populated with source code from the nodes. Whenever the system compiles

the graph, the shaders always are always initialised to this default code.

Each of the five shader text files is split in six segments :

1. Version Segment

2. Varying Variable Segment

3. Uniform Variable Segment

4. Constant Variable Segment

5. Main Segment

6. MainLoop Segment

.

The start of each of these segments is indicated by a unique special iden-

tifier string in comments e.g //$Version$, //$Varyings$ etc. Their purpose

is to serve as a shortcut to quickly navigate to that section of the shader.

These identifiers need to be part of each shader text file, even if in practice

they might not be used. An example of the default vertex shader with the

segmentation identifiers can be seen below :
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// $Vers ion$

#ver s i on 330 core

layout ( l o c a t i o n = 0) in vec3 aPos ;

layout ( l o c a t i o n = 1) in vec3 aNormal ;

layout ( l o c a t i o n = 2) in vec2 aTexCoords ;

layout ( l o c a t i o n = 3) in vec3 aTangents ;

layout ( l o c a t i o n = 4) in vec3 aBitangents ;

// $Varyings$

//Uniforms−Standard

layout ( std140 ) uniform Matr ices

{
uniform mat4 View ;

uniform mat4 Pro j e c t i on ;

} ;
uniform mat4 Model ;

uniform mat4 MV;

uniform mat4 MVP ;

// $Uniforms$

// $Constants$

void main ( )

{

//Main − Defaul t

g l P o s i t i o n = ( Pro j e c t i on ∗ View∗ Model∗ vec4 ( aPos , 1 . 0 ) ) ;

//$Main$

//$MainLoop$

}

Listing 5.2: Default segmented vertex shader

This segmentation creates a clear organized structure that makes the mod-

ification process of a shader easier, as well as providing better readability to

the final result.

The order in which source code is appended to the shader is important.

Nodes that are compiled first need to have their code declarations higher in

the shader text, to ensure that their calculations have finished, before another

part of the code makes use of them further below. In order to ensure this

fact, instead of writing directly to the final shader text, the master root node
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of the graph accumulates all the code from the nodes during compilation and

controls the writing priority.

For each segment, the master node has a list of strings that represents the

code snippets that are meant for that segment. That list is populated in the

order that the code is received, effectively achieving our purpose. Finally,

the master node assembles the shader text by appending each list in the

appropriate segment.

This process occurs every time the graph is to be compiled.

5.5 Varying creation

Communication between shader variables was an important and rather dif-

ficult task to face during development. In order to achieve the desired mod-

ularity and give the freedom to the user to change the shader stage of the

executed code, some sort of subsystem that handles varyings needed to be

implemented.

A variable needs to be declared and treated as a varying when the data

that is passed to a node is derived from a previous shader stage than its own.

Since every node has the current executed shader stage available as exposed

information, it is easy to verify this condition.

We have adopted the following rule for naming varyings in the different

shader stages.
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Shader Stage
Prefix

In Out
Vertex Shader - ’v’

Tesselation Control Shader ’v’ ’tc’
Tesselation Evaluation Shader ’tc’ ’te’

Geometry Shader ’te’ ’g’
Fragment Shader ’g’ -

Table 5.1: Variable name prefixes for each shader stage

A varying variable is created in the shader program during the evaluation

of the output slots. This does not only append the appropriate prefix to

the unique output name, but also declares the variable in the current shader

stage and the ones following it, with the appropriate naming of course. The

system ensures that this declaration only happens once per shader and once

per dataflow direction (in/out).

During the input slot evaluation, the only thing that is required is the

addition of the appropriate prefix in the incoming variable’s name. It should

be noted, that the prefixes are not permanently appended to the variable

names to allow for flexibility. They are simply added in the name only

before modifying shadercode.

5.6 GUI implementation

The visual node editor was created with the external library Dear ImGui

created by [9] which uses immediate mode graphics for the creation of mod-

ular graphic user interfaces in C++. It is responsible for the visual shader

editor panel window, as well as the rendering of the individual nodes and the

connection curves between them.
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For every node instance that is created in the graph, the system will au-

tomatically create a unique visual node associated with it. The visual node

is aware of the graph node it is connected to but the information does not

flow the other way. Changes in the GUI send information to the backend

in order to call the appropriate operations. For example, changing a con-

stant value in an input field will trigger the graph to recompile or creating a

visual connection between nodes will result in the creation of a graph node

connection.

There is one visual node class that handles the appropriate drawing details

for each base node type. All drawing is dynamic in regards to the amount

of inputs/outputs that a node has, meaning that its vertical size will adjust

accordingly. This however is not the case for the horizontal size which is

fixed.

This interface is also responsible for handling special cases for subcate-

gories and types which require additional fields or drawing widgets, like the

dropdown menu for the geometry shader node or the transformation matrix

input node. These widgets are not present for the rest of the nodes of the

same type.
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6.1 Target users and usability testing

The system was not designed with a unique set of users in mind. It was

targeted both towards programmers and artists, but not exclusively to one

of the two. In hindsight, it is safe to observe that since the visual implemen-

tation has a low abstraction level for its components, it is more accessible

to graphics programmers and people with more technical knowledge around

shader programming and its concepts. The custom node creation interface

also reinforces this observation, especially regarding the function nodes which

require actual GLSL syntax to author.

In order to confirm the above, it would be interesting to evaluate the

usability of the tool by asking testers of various skill levels and affiliation with

graphics programming to create specific effects with the visual editor. An

experiment like that could not only provide useful feedback on the current

state of the system, but also inspire new features for future development.

Due to time constraints these tests were not conducted, as the focus of the

development was targeted towards creating a functional version of the system.
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6.2 Limitations

The possible effects that the user can create with the resulting system, are

of course limited to the node library that is available, which at the moment

is pretty basic. A direct comparison with the capabilities of normal code

authoring, only reinfornce this observation. Furthermore, the library’s size

is misleading, as it is populated with a lot of nodes that perform the same

operation but for different data types, due to the absence of the automatic

data type conversion system that was discussed in previous chapters.

The application can only one use and edit one shader program at all times.

This effectively means that the user cannot implement multipass shader ef-

fects or even choose a different rendering target, like for example a texture.

Another drawback is that all of the shader stages are always present in

the program, regardless of their usage. This may prohibit the use of specific

options because of the restrictions that are introduced by the rest of the

shaders, as well as adding some unnecessary overhead to the performance.

For example, when tesselation shaders are active in the pipeline the chosen

drawing topology from the application must always be in patches.

General usability features that can enhance the user experience are also

absent from the current version. Secondary elements like deleting or group-

ing nodes, resetting and saving/loading existing graphs, creating new scenes

and many other would significantly extend the user’s capabilities but their

development was not a priority.
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6.3 Performance

The system runs smoothly at around 58-60 fps for rendering even the highest

available detailed 3D models. There seems to be an initial reduced perfor-

mance after the model loading and until the first graph compilation. After

that, the frames stabilize at the acceptable rate. The following models have

been used for testing :

Model Cube Suzanne Low Bunny Low Stormtrooper Suzanne High Dragon
Vertex Count 36 2904 14904 19554 125952 300000

Table 6.1: The different 3D models used during development

A major factor that can reduce the performance significantly are the tes-

sellation levels of the model, which currently are not bounded by any value.

Should the user choose a high value, the vertex count can increase exces-

sively, making the interface almost non responsive and therefore unusable.

It has to be noted that no particular optimizations have been implemented

regarding the rendering process since there is only one scene with a unique

object that is loaded once.

Another aspect that might influence performance is the frequency of the

graph compilation. A single compilation process does not have significant

overhead, since the graphs that can be created in the editor will realistically

never be too large to prove a computational hazard. However, frequent calls

to the process can slow down the system. For this reason, a recompilation

of the whole graph is triggered only when a non-uniform value is changed in

the visual editor or connections are altered in the graph. This ensures that

the number of compilation triggers is the necessary minimum.

An example of severe performance overhead that occurred due to the fre-

quency of compilation calls, was the introduction of the Time node. Since it
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exposes a value that is updated constantly, the older version of the system

triggered graph compilations on every frame, making the tool unusable. The

issue was resolved with the use of uniform variables, that are simply updated

for the program every frame without the need to recompile the graph. A

node that represents a uniform variable is added in a list which is traversed

and evaluated separately.

The program at the current version also mishandles memory, resulting in

the application to crush after a certain point in time.

6.4 Intermediate effect preview

A very useful feature that modern tools like Gratin [16] and Shadergraph []

offer is the preview of a shader effect in intermediate stages. This gives the

user the opportunity to inspect how specific nodes will affect the calculations

up to a certain node, apart from having the preview of the whole graph

calculation.
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Figure 6.1: Examples of the preview feature in Unity’s Shadergraph

Even though this feature is not available in the current version of the

tool, it was part of the considerations that took place during the design of

the backend. The initial idea was to keep track of the actual values of the

inputs and the outputs for every node, in order to quickly display them to

the user when requested. The obvious problem with this approach is that

the calculations that take place in function nodes do not actually happen

during the compilation process. They will only be performed in the GPU by

the shaders themeselves, so an output value can never be calculated on the

spot and displayed in the application.

A possible way to implement it, is to have different ”hidden” shader pro-

grams for every node that offers such a preview window, which will accu-

mulate and execute the shader code that has been created by the graph up

to that point. This is essentially the same process that is performed for the

whole graph by the final master node. However, since different shader stages

are exposed as nodes and are an essential part to the traversal of the graph,

displaying a specific intermediate effect might not be a trivial task. Calcu-
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lations from different branches of the tree might be required for the correct

display of the intermediate effect, that could alter the current algorithms of

system significantly. Due to these difficulties and seeing that this feature is

also of inferior importance, its implementation was left for the future work.

6.5 Loops

Using geometry and tesselation shaders introduced an interesting challenge

during development, which is the use of loops and arrays. Both of these

shaders receive data in the form of arrays of structs that represent all the

vertex information from either a patch or a different type of primitive and

their use is crucial to the calculation of the new geometry that will be gen-

erated. Additionally, the output geometry is not calculated one element per

shader invocation, like in the cases of the vertex and fragment shader. In a

typical usage case of the geometry shader for example, every invocation emits

at least the same amount of vertices as the ones contained in the primitive

that was provided, if not more. Two possible ways can be viewed below:

void main ( ) {

i n t NumOutVertices = 3 ;

g l P o s i t i o n = g l i n [ 0 ] . g l P o s i t i o n ;

EmitVertex ( ) ;

g l P o s i t i o n = g l i n [ 1 ] . g l P o s i t i o n ;

EmitVertex ( ) ;

g l P o s i t i o n = g l i n [ 2 ] . g l P o s i t i o n ;

EmitVertex ( ) ;

EndPrimitive ( ) ;

}

Listing 6.1: Sequential Method

void main ( ) {
i n t NumOutVertices = 3 ;

f o r ( i n t i =0; i<NumOutVertices ; i++)

{
g l P o s i t i o n = g l i n [ i ] . g l P o s i t i o n ;

EmitVertex ( ) ;

}
EndPrimitive ( ) ;

}

Listing 6.2: Loop method

The challenge/question is what is the best way to expose this information
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to the user, both for accessing the different structs from the input and cal-

culating the emitted vertices. There are a few different options to consider

for each case.

Regarding the output calculation from the geometry shader, implementing

the sequential method that is depicted on the left in figure xx , results in

the most customizable solution. The user can calculate every single emitted

vertex individually, providing the same opportunities as authoring the code.

The obvious flaw in this method is the decrease in usability due to the great

number of input slots of the resulting shadernode (one for each generated

vertex). Should that number increase to the double digits, the node becomes

less and less usable, especially in the current version of the system where the

GUI does not provide any resizing (zoom in/out) or collapsing for the node

editor.

Another method, which is the one currently used by the system, is to

provide a formula for calculation for each point inside a loop, as shown on

the right side the previous example . This has the opposite effect of the

previous method, in the sense that it restricts the position calculation to a

specific formula for each vertex but offers a much simpler node interface with

only one slot to be evaluated. The loop is part of the default code of the

geometry shader and it is the reason why the MainLopp segment exists and

is used.

In both of the cases above, using data from the input primitive is important

to the calculation of the new geometry. Providing access to the input array of

structs can be implemented with a similar logic. A sequential method would

expose all indices individually (e.g gl in[0].gl position,gl in[1].gl position) while

a more generic method exposes one slot with a variable index (gl in[i].gl position).

The first method might be a manageable feature for the input of the geom-

etry shader, since the primitive with the maximum amount of data has only
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6 vertices but for tesselation shaders the patches may grow dramatically in

size. For this reason, the generic method was preferred in the current version.

It is important to note that arrays are not handled by the system as a

different slot data type. The variable indexed struct data gl in[i].gl position

is nothing more than the name of the variable in the output slot, which is of

the same data type as the exposed variable (vec4 in this case). This means

that connecting this slot to any kind of input will result in errors in its present

form, since the index variable cannot be evaluated by the shader code. A

direct connection will only work in the case of the geometry shader which,

as was mentioned above, will append the code inside a loop. Even in this

case, if the number of input-output vertices does not match, the geometry

will result in errors.

To address the above issue and have some control over the array, a special

ArrayIndex node was introduced, which receives data in the form of an array

and replaces the index with a value specified by the user. This of course

introduces the problem of requiring multiple of these nodes to effectively

index every incoming value, but it offers a starting point to addressing the

issue.

The implementation details that were introduced in the previous para-

graphs, are but a first attempt in exposing these new shader stages to the

visual environment. The complexities involved with the data handling were

discovered late in the development process, resulting in the above constrained

usage.

An attempt at designing an alternative system for handling loops as nodes,

could assist at the implementation of a more generic system that does not

require so many predefined components in order to operate. This matter will

be discussed briefly in the future work in the next chapter.
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6.6 Shaders that have been created with the

system

The following screenshots showcase different shader effects that were created

with the resulting system:

6.6.1 Blinn Phong lighting

Figure 6.2: Blinn Phong
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6.6.2 Screen Space Normals

(a) Standard color

(b) Normal color

Figure 6.3: Screen space normals
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6.6.3 MatCap shading

Figure 6.4: Matcap shading for different materials
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6.6.4 Texture sampling and color mix

Figure 6.5: Texture-Color mix with different blend values
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6.6.5 Explosion shader

Figure 6.6: Stages of explosion shader with triangle strip topology
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Figure 6.7: Stages of explosion shader with point topology
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Future work and improvements

This chapter will summarize the desirable features and thoughts around mat-

ters that are part of the future development of the system. Some of these

have already been mentioned in previous chapters. The order of the elements

in the following paragraphs, does not represent the priority or importance of

the discussed component.

Designing a new system for generating and handling loops is one of the

most interesting prospects of the future work. An inspiration for implement-

ing such a task can be found in Unreal Engine [6], where loops are fully

programmable nodes that can be connected to other function nodes. This

connection is different from the typical data input/output slot interface that

has been used so far. Instead, there is a special flow control input slot that

manages the execution of the node’s function.

A similar technique could be used for our purposes, where shader code

could be wrapped in any type of flow control statements. This of course

introduces the difficulty of defining what does it mean for a node to be exe-

cuted multiple times and is that definition the same for all types of function

nodes ?

The flow control system could also assist in improving the access and

iteration over data arrays, which in the current version is pretty constrained
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and only allows access to a singular element.

The introduction of an automatic data type conversion system will re-

move any unnecessary usage of conversion nodes that currently perplexes

the graph. This system might remove some of the direct control that the

user has over these type conversions, but simplifies the usage of the tool sig-

nificantly. Possible issues with this automation could be prevented, by giving

the user the opportunity to choose the conversion they want with GUI wid-

gets on every connection, instead of providing a general lookup rule table

which is common for all cases.

Usability can also be improved by adding general workflow options to the

editor like deleting nodes, zooming in/out for a better overview of the graph,

multiple node selection and moving, grouping and collapsing nodes etc.

Generalizing the use of the shader stages is an important step towards

making the current structure more modular. Instead of constantly making

use of all available shader stages, the user should be able to choose when

to activate and include each stage in the pipeline. The intermediate effect

preview that was mentioned in the previous chapter could also benefit from

this modularity.

Apart from the visual editor, the system could also expand the capabil-

ities of the scene editor. Some of the most typical features that could be

added are camera manipulation, the additional loading and manipulation of

objects, saving and loading scenes and other general rendering options. This

will enable the creation of more complex scenes that contain many different

shader effects at the same time.

Choosing a final render target for the results from fragment shaders can

lead to the use of multipass effects and also serve as a possible link between

different shader pipelines (different graphs in this case).
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Finally, overall optimizations in code and bug fixes will ensure that the tool

operates at its full potential and the functionality of the tool is the expected

one.
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Conclusion

The purpose of this thesis was to create a node based tool that can perform

real-time modification of computer graphics shaders using visual program-

ming.

This is managed through the creation and manipulation of a graph, whose

nodes represent shader operations while the connections between them rep-

resent dataflow. Apart from the standard vertex and fragment shaders, the

user may additionally create effects for geometry shaders, as well as the mod-

ern tessellation shaders.

In order to allow for additional flexibility and modularity, apart from the

predefined node library that is provided, the system provides a custom node

creation interface where the user can define their own node operations.

The design and implementation of the tool, provided some insight to useful

techniques for achieving communication between the different shader stages

in the pipeline and assembling a shader program in a modular way. Ad-

ditionally, this report outlines the complications that come along with this

modularity and proposed partial solutions for them.

The creative possibilities, as well as the usability of the resulting system

are still pretty limited in the current version. The resulting shader code
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has not been subjected to any optimizations that could simplify the code

placement or increase performance. Furthermore it is exclusively authored

in GLSL, which restricts the integration with other applications that make

use of other shading languages.

All in all, the implementation of the system serves as a good basis, that

can be further built upon to create a consistent application for the easier

creation and testing of computer graphics shaders.
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